
HOLA: Human-like Orthogonal Network Layout

Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow

Fig. 1: Human, yFiles, and HOLA layouts of SBGN Glycolysis-Glygoneogensis pathway. It is clear that the human and the
state-of-the-art layout algorithm from yFiles produce structurally quite different layouts. In this paper we explore the reasons why
humans arrange such orthogonal network diagrams differently to standard algorithms and use this to inform the design of a new
algorithm, HOLA (output shown right-most), that aims to produce more “human-like” layout.

Abstract— Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic
techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout
of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of
a human. We give a new “human-centred” methodology for automatic network layout algorithm design that is intended to overcome
this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed
that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to
develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best
available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

Index Terms—Graph layout, orthogonal layout, automatic layout algorithms, user-generated layout, graph-drawing aesthetics

1 INTRODUCTION

Visualisation of connectivity is essential to understanding relation-
ships, dependencies and failures in complex systems such as those
occurring in power-grids, software, biological pathways, brain-
connections or financial markets. While direct visualisation of ad-
jacency matrices (and exotic variations such as [9]) offer a non-
diagrammatic way to represent network structures, the most widely-
used and intuitive way to depict connectivity is through node-link dia-
grams.

Automatic layout of node-link diagrams has been studied since
the 1960s. Force-directed approaches date from 1965 [14], layered-
layout for directed graphs from 1981 [33] and orthogonal layout from
1986 [7] in which connectors consist of horizontal and vertical seg-
ments. The designers of these early algorithms relied on intuition and
well-known gestalt principles to infer aesthetic and readability criteria.
These early algorithm designs were also influenced by the availability
of efficient heuristics for well-understood problems in graph theory
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(such as identification of a planar subgraph). For example, the first
step in Topology-Shape-Metrics (TSM) approach from 1986 by Batini
et al. [7] is to attempt to embed a planar subgraph without crossings.
TSM remains the basis for most orthogonal layout methods in use to-
day.

Despite these decades of research into network layout it is fair to
say that currently no automatic layout algorithm produces layout of
comparable quality to that which a human can produce with careful
manual adjustment. This is why manual layout continues to be used
for curation of metabolic pathways in biological repositories such as
KEGG. As an example Figure 1 compares layouts produced using the
state-of-the-art orthogonal layout algorithms in the yFiles graph layout
library [4] with those produced manually. It is clear that the layouts
are very different, and, as our studies described here show, humans
overwhelmingly prefer orthogonal layouts produced by hand to those
produced using traditional orthogonal layout algorithms. Here we ad-
dress the problem of how we can develop automatic network layout
algorithms that produce layouts that truly are of comparable quality to
those produced manually.

We believe a necessary requirement for building such layout algo-
rithms is an understanding of what humans value and like in network
layout. One possible reason for the current discrepancy between man-
ual and automatic layout is that formal user studies of requirements
for good layout only occurred after the initial development of auto-
matic layout methods. The earliest user studies that we know of were
not until the mid 1990’s. These used carefully designed diagrams to
investigate whether the aesthetic criteria intuitively identified by the
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early algorithm designers did in fact assist with comprehension, e.g.
[29, 23]. At the time this was taken very much as an affirmation of the
existing algorithms since these studies largely confirmed that the aes-
thetic criteria identified by the algorithm designers, such as reducing
crossings and bend points, did affect readability.

It is not until quite recently that studies such as [34, 12, 30] returned
to first-principles in understanding the requirements for network lay-
out by investigating the kind of node-link diagrams that humans con-
struct by hand. Such “human authored layout” studies have identified
aesthetic factors not considered by early algorithm designers or in the
previous usability experiments. Unfortunately, this work is rather late
to the party and—until now—has not influenced the design of auto-
matic layout algorithms. This is not really surprising, as creating new
algorithms or re-engineering existing algorithms to capture new aes-
thetics is difficult and time consuming. Furthermore, algorithms re-
search is typically the domain of researchers who have little interest in
human studies.

Here we bridge the gap between user studies and algorithm design
and explore how such user studies can be used as “formative” input
into the design of network layout algorithms. Our contributions are
three-fold:
1) A new “human-centred” methodology for automatic network lay-
out algorithm design. This methodology utilises user studies for both
formative and summative feedback. It has three steps: 1) conduct user
studies to determine the aesthetic criteria that humans value and the
tradeoffs between them; 2) develop an algorithm that encodes these
aesthetics; and 3) evaluate the algorithm in user studies by comparing
it to both manual layout and the best existing automatic layout algo-
rithms. Ours is the first work we are aware of that “closes-the-loop” of
designing a network layout algorithm based on human preferences in
this way.
2) A measurably better automatic orthogonal network layout algo-
rithm, HOLA (Human-like Orthogonal Layout Algorithm). We have
used the human-centred methodology to develop an orthogonal lay-
out algorithm that is more effective in terms of both readability and
aesthetics than the best available orthogonal layout algorithm. Our
new approach is made possible by the flexibility of the constraint op-
timisation techniques described in [11] and the optimisation approach
to edge-routing as described in [36]. Our user study also shows that
HOLA produces layouts of comparable quality to those produced by
hand: this is the first automatic layout algorithm that we know of that
can claim this level of quality.
3) The first formative user study designed to explore the aesthetic cri-
teria valued by humans in orthogonal edge routing. This is the first
“human-authored layout” study in which the participants were not
only able to move nodes but were also required to manipulate orthog-
onal edge routes. This permitted the interesting discovery that in man-
ual layout people often create “aesthetic bend points” deliberately, and
this became a special feature of our layout algorithm.

While an algorithm designed by our methodology can be expected
to produce layouts that users want, it is fair to ask whether these are
also the layouts that users need, i.e. which best facilitate their tasks.
Our summative study has revealed however that users not only pre-
ferred HOLA layout aesthetically but also performed better on HOLA
layout with tasks like finding a shortest path between two nodes. This
raises the question whether the manual layouts that HOLA is designed
to mimic are consciously made “usable” by their human designers, in
addition to aesthetically pleasing, but this question is beyond the scope
of this paper.

The reason that we have focused on orthogonal layout is its practi-
cal importance. Orthogonal diagramming conventions are widely used
and sometimes even mandated by standards for electrical engineering,
software engineering, process flow diagrams and other software en-
gineering notations. Standards such as SBGN and KGML in the life
sciences also use orthogonal conventions. Because of the poor perfor-
mance of current layout algorithms, manual layout is widely used for
the layout of diagrams of up to a few hundred nodes. These diagrams
also typically have low edge density: cloning and other techniques are
used to reduce the number of edges so as to improve readability. Thus,

there is a clear need and motivation for better techniques for these
kinds of diagrams that, in our opinion, has been largely overlooked
in recent years by information visualisation researchers in the rush to
draw larger and larger networks.

2 HUMAN STUDIES CONSIDERING NETWORK LAYOUT

The first network layout user studies investigated whether the intuitive
aesthetic criteria used to motivate the design of graph drawing algo-
rithms did in fact affect human understanding of graphs. Early studies
by Purchase and her colleagues [28, 24, 29, 27] investigated how re-
ducing edge crossings, reducing bends, showing subgraph symmetry,
increasing angle of incidence of edges entering/leaving a node, and
orthogonality (which was taken to mean node placement on a grid)
affected user performance on tasks like finding the shortest path be-
tween two nodes in abstract graphs. Another study by Purchase et
al. [26] investigated the effect of these aesthetics on user preference
in UML diagrams while Huang et al. [19] investigated their effect on
both preference and performance for social networks. These studies
reported strong negative effects on task performance and user prefer-
ence for edge crossings and to a lesser extent edge bends and found
that symmetry and orthogonality were preferred. Huang et al. found
a preference for important nodes to be placed at the top of the draw-
ing. Subsequent studies by Ware et al. [35] and an eye-tracking study
by Huang [18] have suggested that the negative effect of edge cross-
ings is reduced if the edges cross at large angles and that continuity
of edges through nodes is important in path following. A recent study
by Marriott et al. [22] examined the effect of these aesthetics on re-
call. Starting with Himsolt [16] some user studies have used pref-
erences and task performance to compare different automatic layout
algorithms and layout styles [25, 27, 19]. These findings have been
inconclusive.

We believe that a new kind of user study pioneered by van Ham
and Rogowitz [34] can provide particularly important formative input
for network layout algorithm design. In such studies participants are
asked to manually draw or edit graphs. Their drawings may reveal the
existence of aesthetic criteria not previously considered and also pro-
vide insight into how people trade off the different competing criteria.

These studies of human-composed network layout have reported a
number of findings about human preferences for layout that have not
yet been incorporated into algorithms. In particular, van Ham and
Rogowitz found that people like to arrange “clusters” in graphs such
that the edges form a convex boundary. Dwyer et al. [12] found that
layouts with low stress were strongly preferred over layouts with large
variance in edge lengths. The same study also found that users strongly
preferred force-directed or user-generated layouts that resemble force-
directed layout over an orthogonal diagram produced by a standard
algorithm (yFiles).

Most recently Purchase et al. [30] asked participants to draw a graph
specified by an adjacency matrix using a graph drawing sketch tool.
They found that edge crossings were avoided and that grid-like layouts
were preferred. They also found that clusters were emphasised and
that edge lengths were relatively uniform.

3 MANUAL LAYOUT OF ORTHOGONAL NETWORKS

One of the main contributions of this paper is to explore how user
studies can inform the development of better network layout algo-
rithms. Our human-centred design methodology is based upon using
user studies as formative input into the design of the layout algorithm
from the very start. We believe that studies in which users are free to
layout the network in any way they like are particularly useful in being
free of any bias imposed by an existing automatic technique. However,
while the few previous such studies [34, 12, 30] are certainly rele-
vant to understanding what humans like in orthogonal network layout,
none considered orthogonal edges. We therefore conducted a human-
composed network layout study specifically designed to identify the
factors that humans regard as important for good orthogonal layout.

Like [12, 30] our study had two stages. In the first stage participants
were asked to manually layout some small graphs. In the second stage
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Initial Human 17th Human 16th Human 2nd Human 1st yFiles HOLA
Graph 1

µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.51 µ̄1 = 0.53 , µ̄2 = 0.61 µ̄1 = 0.51, µ̄2 = 0.41 µ̄2 = 0.48

Graph 2

µ̄1 = 0.02 µ̄1 = 0.02 µ̄1 = 0.09 µ̄1 = 0.57 µ̄1 = 0.58 , µ̄2 = 0.81 µ̄1 = 0.25, µ̄2 = 0.21 µ̄2 = 0.49

Graph 3

µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.59 µ̄1 = 0.69 , µ̄2 = 0.52 µ̄1 = 0.33, µ̄2 = 0.10 µ̄2 = 0.88

Graph 4

µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.58 µ̄1 = 0.59 , µ̄2 = 0.59 µ̄1 = 0.21, µ̄2 = 0.11 µ̄2 = 0.80

Graph 5

µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.07 µ̄1 = 0.60 µ̄1 = 0.63 , µ̄2 = 0.70 µ̄1 = 0.63 , µ̄2 = 0.38 µ̄2 = 0.42

Graph 6

µ̄1 = 0.02 µ̄1 = 0.05 µ̄1 = 0.02 µ̄1 = 0.55 µ̄1 = 0.66 , µ̄2 = 0.83 µ̄1 = 0.15, µ̄2 = 0.14 µ̄2 = 0.53

Graph 7

µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.03 µ̄1 = 0.63 µ̄1 = 0.64 , µ̄2 = 0.52 µ̄1 = 0.63, µ̄2 = 0.42 µ̄2 = 0.56

Graph 8

µ̄1 = 0.00 µ̄1 = 0.00 µ̄1 = 0.02 µ̄1 = 0.61 µ̄1 = 0.68 , µ̄2 = 0.45 µ̄1 = 0.61, µ̄2 = 0.42 µ̄2 = 0.64

Fig. 3: The 8 graphs and some of their layouts from the manual layout of orthogonal graphs study. At left is the initial layout. The next 4
columns show the two worst and the two best manual layout. The two final columns show automatic layout from yFiles and our proposed
algorithm HOLA. µ̄1 = normalised inverted mean rank for first study, µ̄2 = that for second study. Best possible value is 1, worst possible 0.
Means in boxes indicate best actual mean rank for that contest.
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Table 1: Pearson’s correlation coefficient between normalised inverted mean rank µ̄ and various indicators of the quality of a layout. Positive
correlations indicate a feature which makes a better layout, negative correlations a worse layout. Single star * means significance at p = 0.05
level. Double star ** means significance at p = 0.01 level. A ‘–’ indicates a feature not applicable to that graph.

# Crossings # Bend points Seg Length Std Dev Stress Compactness Gridiness Symmetry # Outer trees
Graph 1 -0.427* -0.705** -0.340 -0.059 0.734** 0.517* 0.644** –
Graph 2 -0.253 -0.630** -0.411* -0.515* 0.725** 0.658** 0.724** 0.148
Graph 3 -0.436* -0.508* -0.798** -0.689** 0.687** 0.623** 0.767** –
Graph 4 – -0.666** -0.813** -0.859** 0.695** 0.883** 0.752** 0.740**
Graph 5 -0.543** -0.569** -0.306 -0.219 0.870** 0.805** 0.454* -0.055
Graph 6 -0.308 -0.048 -0.599** 0.138 0.698** 0.698** 0.301 –
Graph 7 -0.586** -0.626** -0.693** -0.337 0.703** 0.712** 0.600** 0.491*
Graph 8 -0.660** -0.733** -0.863** -0.662** 0.759** 0.754** 0.743** 0.749**

(a) Bend point “snap-to”
when dragging a node

(b) Dragging an edge

Fig. 2: The Orthowontist online editor. We considered existing editors yEd
and MS Visio, but found the controls for editing orthogonal connectors to be
overly complex, so devised the simple interface employed in Orthowontist.

(different) participants were asked to rank the manual layouts. This
allowed us to identify the manual layouts that really were regarded
as being of high quality. We also included the original layout and an
automatically generated layout in this ranking.

3.1 Stage A

Apparatus & Materials: In the first stage participants were asked to
manually improve the layout of 8 small graphs. The initial graphs are
shown in the leftmost column of Fig. 3 while the other columns show
some of the manual improvements. The graph stimuli had between 4
and 13 nodes and the initial layout was quite messy with many bends
and crossings. Small graphs were used because it was unrealistic to
require participants to spend the large amount of time needed to man-
ually layout graphs with more than this number of nodes.

To edit the layout participants used an easy-to-use web-based in-
teractive layout tool explicitly designed for manually editing orthog-
onal graph layouts. The tool, Orthowontist, was programmed in
HTML5/JavaScript. It allowed the user to move nodes, to add, delete
or move bend points in the orthogonal connector routes, and to change
the position in which a connector enters the node. The tool logged
editing actions and their time as well as recording the final layout,
Fig. 2.

Participants: The study was advertised on Monash Memo, a
university-wide bulletin. Seventeen participants undertook the study
and all completed it. Three $50 gift cards were offered as incentive,
and participants were instructed that they would win one of these if
their layouts were ranked in the top three in Stage B of the study.

Procedure: Participants completed the study online, with the graph
editing tasks taking an average 15 min 6 sec in all. This stage of the
study had four components:
1) After reading an explanatory text and signing the consent form par-
ticipants completed a short questionnaire to ascertain their prior ex-
perience with node-link diagrams. Their identities are protected, but
they were also asked if they wished to leave contact details in case they
won one of the gift cards.
2) The participants completed training in the use of Orthowontist.
3) In the main part of the study the participants were presented in turn
with the 8 graphs arranged randomly. Participants were asked to edit

the diagram until they felt that it “looked good” and clearly conveyed
the connections between the nodes. They were asked to imagine that
the diagram would be used to convey information and should be clear
and readable. Participants were instructed that the experiment was
not timed, and they could take as long as they liked. Once they were
satisfied with the layout they moved to the next graph. The order of
the graphs was randomised.
4) Finally the participants were asked to write down what their goals
were when improving the layout of the networks.

3.2 Stage B

Apparatus & Materials: In the second stage participants were asked
to choose the best layout obtained from Stage A for each of the 8 sam-
ple graphs. In addition to the seventeen human-made layouts of each
graph, we also included the original messy layout, as well as the layout
computed for that graph by the classic orthogonal layout command in
the yEd diagram editing software (version 3.9.2) [4] with default set-
tings (yFiles layout)1. There were thus eight graphs g1,g2, . . . ,g8 with
nineteen layouts each. We denote by L(i)

j layout j of graph gi, where
i∈{1,2, . . . ,8}, and j ∈{0,1, . . . ,18}, with j = 0 meaning the original
messy layout, j = 18 meaning the yFiles layout, and j ∈ {1,2, . . . ,17}
meaning the layouts created by the seventeen human respondents of
the first stage.

Because of the large number of graphs to compare we used a tourna-
ment structure to identify the best layout. This meant that participants
were only required to vote for the best layout out of the three presented
to them in each match of the tournament. We wrote a web-based tour-
nament tool so that the study could be conducted online.

Participants: The study was advertised on Monash Memo. It was
completed by 66 participants. One participant was excluded because
they consistently chose the third layout. A $50 gift card was offered as
incentive, and it was explained that the winner would be the participant
whose choices were the closest to the aggregate choices, thus that in
order to win your best strategy was to choose the layouts which you
thought other participants would also choose.

Procedure: The survey was conducted online. Upon loading, the
tournament software organised the human-made and yFiles layouts
for each graph gi into a tournament structure with random seeding;
i.e. the eighteen layouts of positive index L(i)

1 ,L(i)
2 , . . . ,L(i)

18 were shuf-
fled into a random order to make the seeding of the tournament. For
each match of the tournament the participant was presented with three
layouts and asked to choose the best one. The tournament thus fell
into three rounds, with six matches in the first, and two matches in
the second, at which point the two best layouts among the eighteen of
positive index had been chosen. For the final round these two layouts
were pitted against the original messy layout L(i)

0 . Participants spent
an average of 6.57s per choice (discounting outliers of one minute or

1The yFiles orthogonal layout algorithm has many options. After extensive
experimentation we came to the conclusion that the developers have already
tuned the default settings to give best all-around results. For this reason, and
also for reproducability, we determined to use default settings across all graphs
used in our studies.
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longer), and the entire survey took an average of 7 min 53 sec to com-
plete.

3.3 Results & Discussion

In response to the familiarity questionnaire of Stage A, 100% of partic-
ipants said they were familiar with node-link diagrams, 94% said they
had used a node-link diagram created by someone else, and 59% said
they had created a node-link diagram in order to convey information
to others.

Excluding outlying inter-drag pauses of a minute or longer, the av-
erage time spent editing each graph ranged from 1 min 4 sec (Graph 1)
to 3 min 22 sec (Graph 5), with an overall average of 1 min 53 sec per
graph.

Based on the tournament results in Stage B we computed the mean
rank of each of the 19 layouts for each of the 8 stimuli/input graphs.
Equal ranks were averaged so that the winner of a tournament re-
ceived rank 1, layouts that lost in the final round rank 2.5 each, lay-
outs losing in the second round rank 6.5 each, and layouts that lost
in the first round received rank 14.5. These ranks were averaged over
all participants to compute the mean rank µ for each layout of each
graph. This was then adjusted to a normalised inverted mean rank
µ̄ = 1− (µ−1)/13.5 ranging from 0 to 1, with 1 being the best pos-
sible score, and 0 the worst. Fig. 3 shows the original layout, the two
best and two worst manual layouts for each of the input graphs, as well
as the layout produced with yFiles.

Our analysis identified nine significant results (R1-9)2. The first
two findings are novel:
R1 users like trees placed outside i.e. the
maximal acyclic components are placed out-
side the graph and not in inner faces. This
is in line with users wishing to separate clus-
ters [34, 30] and is supported by the positive
correlations seen in the “# Outer trees” col-
umn in Table 1;
R2 users create “aesthetic bend points” we
observed, in contrast to previous research,
while bends overall were correlated with
a poor ranking, nevertheless, certain bend
points serving an obvious (to us) aesthetic
purpose were present in most of the top-ranked human layouts. This
is true for all except Graph 4 in the ‘Human 1st’ column of Fig. 3.
In particular unnecessary bend points appear to have been introduced
to emphasise symmetry or to ensure that if a node has two edges they
are on opposite sides of the node, perhaps to ensure continuity in path
following.

Furthermore we found correlations (Table 1) showing that user pref-
erence is positively correlated with:
R3 compactness (ratio of the area occupied by the nodes to the total
area of the graph, the latter given by the bounding box of all nodes and
bend points);
R4 grid-like node placement (percentage of nodes that participated
in at least one alignment of three or more nodes);
R5 symmetry (largest set of nodes which pair off completely by re-
flection over a horizontal or vertical axis);
and negatively correlated with: (R6) edge crossings; (R7) edge
bends; standard deviation of (R8) edge segment length; and (R9)
stress. These accord with the conclusions of earlier studies [34, 12,
30].

In the answers to the post-task question about their aims when man-
ually laying out the graphs, many participants mentioned untangling
the graph and removing crossings, this seemed to be the most basic
aim. Some mentioned symmetry, overall shape, balance, and trying to
lay it out on a grid. Another mentioned “layout the less connect[ed]
node[s] on [the] outside in a diagram.”

Our experiment confirmed that manual layout leads to quite a differ-
ent style of layout than that computed by the most widely used orthog-
onal layout algorithm. Furthermore humans significantly prefer the

2Full results available online [2]

1. Topological decomposition of graph into trees and core (Fig. 5a)

2. Layout of the core (5b,5c):

(a) Stress-minimising layout of core (P1:R3,5,6,8,9)
(b) Greedy orthogonalisation of layout (P2:R2,4,9)
(c) Orthogonal edge routing (P2:R6,7,8)

3. Tree layout and placement (5d,5e):

(a) Symmetric layout of each tree (P3:R5)
(b) Planarisation of core
(c) Insertion of trees into the core (P3:R1)
(d) Stress-minimising layout (P1:R9)

4. Opportunistic improvement (5e,5f):

(a) Opportunistic alignment (P2:R4)
(b) Node distribution by neighbour stress (P2:R3,8)
(c) Rotation (P2)
(d) Remove dummy nodes and final orthogonal edge routing

Fig. 4: Steps in the HOLA Algorithm, with cross-reference to our
design principles P1-3 and aesthetic goals R1-9

best human layout (µ̄ = 0.621) to that produced by yFiles (µ̄ = 0.415),
as confirmed by a Wilcoxon signed rank test with p = 1.286e-9. We
believe this is because current algorithms for orthogonal layout are de-
signed to first minimise edge crossings, then bend points, and finally
area, whereas humans are more flexible and will keep edge crossings
and bends if this reveals symmetries, separates clusters, reduces seg-
ment length or improves compactness. They also like nodes to be
organised on a grid.

4 HUMAN-LIKE ORTHOGONAL LAYOUT ALGORITHM (HOLA)
Given the widespread use of orthogonal networks there is a clear need
for a new kind of layout algorithm, one that produces more human-
like layout. Here we describe our new Human-like Orthogonal Layout
Algorithm (HOLA). This has been carefully designed in accord with
the aesthetics (R1-9) identified in the above user study. To give some
feel for the effectiveness of our new algorithm we show the layout
produced by HOLA for the 8 input graphs in the last column of Fig. 3.

HOLA has 4 main steps as listed in Fig. 4 and illustrated in Fig.
5(a–f). Since symmetry (R5) is easy in tree layout (Step 3a), and users
like trees on the outside (R1), we decided to decompose the graph into
trees and core (Step 1), also reasoning that stress-minimisation could
better reveal symmetries in the core once the trees had been removed.
The flexibility of the constrained optimisation approach allowed us
to then combine many and varied ideas in Steps 2, 3, and 4 to further
address the aesthetic goals (R1-9), as examined in greater depth below.

The algorithm is fundamentally different to previous orthogonal
layout algorithms (i.e. those based on the Topology-Shape-Metrics
(TSM) approach) [7]. TSM first fixes an embedding for the pla-
narised input graph, then solves bend minimisation for this embed-
ding to achieve an orthogonal shape, and in the final compaction step
computes node positions. In contrast our approach is based on the
following Principles:
P1 Use stress-minimisation (R9) to untangle the graph (R6) and re-
veal underlying symmetries (R5) as well as encouraging uniform edge
length (R8) while keeping the layout compact (R3). Also, stress is al-
ways considered as one of the optimisation criteria throughout further
modifications (R9).
P2 Apply incremental extensions/improvements to the existing layout,
like an opportunistic human editor. In particular this is used to “tune”
bend points (R2) and to achieve grid-like alignments where possible
(R4).
P3 Subgraphs with tree structure are treated specially such that they
can be arranged symmetrically (R5) and their placement can be con-
trolled precisely (R1).

With respect to P1, this process is essentially opposite to that of
Didimo et al. [8], in which a diagram is first given an orthogonal lay-
out, and then that layout is made increasingly “force-directed”. HOLA
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(a) Step 1: Trees (dark
grey nodes) will be
pruned.

(b) Step 2: Stress-
minimal layout of core.
Dark grey nodes are the
roots of trees.

(c) Step 2 (cont.):
Core orthogonalised,
edges routed, graph
planarised.

(d) Step 3: Two trees
placed, the tree rooted
at the dark grey node is
next. It could be placed
NW, SW, or E.

(e) Step 3 (cont.) and 4:
All trees placed. Note:
the two dark grey nodes
are almost but not quite
aligned.

(f) Final layout. Nodes
that were nearly aligned
have been exactly
aligned. Tree nodes
have been reinserted.

Fig. 5: HOLA applied to a small example graph illustrating the four main steps.

instead gives primacy to low-stress layout by beginning with a (lo-
cally) stress-minimal layout then gradually making it orthogonal. The
second point means that at virtually all stages of the pipeline there is
an actual layout, i.e. positions for nodes and edges. This differs from
TSM based approaches in which earlier stages in the pipeline only con-
sider abstract topology. P2 reflects our desire to produce human-like
layout and so we are employing a more human-like layout method.

The most closely related approach is that of Kieffer et al. [20] which
explores the use of greedy heuristics to “gridify” a force-directed lay-
out by snapping nodes to a grid or adding vertical or horizontal align-
ment constraints between nodes, and Rüegg et al. [31] which extends
this to handle port constraints and directed edges laid out using or-
thogonal connectors. While stages 2b and 4a of HOLA utilise sim-
ilar greedy heuristics, these are a small part of the overall approach.
HOLA has been designed from the beginning to take into account aes-
thetics (R1-9) and, for instance, employs a completely different ap-
proach to layout of the graph’s subtrees.

We now look at the steps in HOLA in more detail. This algorithm
assumes a connected graph G = (V,E), with node set V and edges E.

4.1 Topological decomposition

Step 1 is a peeling process [6, 5, 32] where all leaves are removed from
the graph G repeatedly until none remain. The leaf nodes are added
to a new graph H and reconnected to one another as they are added.
When no leaves are left in G the remaining subgraph C is called the
core. In Fig. 5a the dark grey nodes will be pruned by this process.
Finally if L is the set of nodes in H, and ρ : L→V maps each pruned
leaf node to the unique node to which it was attached at the time that it
was pruned, then we form the set R = {ρ(`) : ` ∈ L}\L of root nodes,
and add to H a copy r′ of each node r ∈ R, connecting it to each `
for which ρ(`) = r. The connected components of H then constitute
some t trees T1,T2, . . . ,Tt , t a nonnegative integer equal to the size of
the set R, and each tree Ti has root node r′i ∈ H which is a copy of a
node ri ∈C. If we have t = 1 and C = /0, i.e. the graph G is in fact a
tree, then we simply apply our symmetric tree layout procedure (see
below) and terminate. (See e.g. the HOLA layouts for Graphs 3 and 6
in Fig. 3.) Otherwise we proceed with Step 2, layout of the core graph.

4.2 Layout of the core

(a) Layout of the core graph C begins with a simple unconstrained
stress-minimising layout [11], followed by the application of overlap
removal constraints [13]. The first of these steps gives the nodes a
natural and low-stress distribution in the plane (Fig. 5b). The user
study of Dwyer et al. [12] has shown that users like low-stress layouts,
and as we begin to orthogonalise the layout we will try to keep the
stress low, in service of P1.
(b) Orthogonalisation proceeds in two steps, which we call node con-
figuration, and chain configuration. In node configuration we sort all
nodes v of degree 3 or higher by falling degree, and visit them in or-
der. For each node v, we will align at most one of its neighbours in
each of the four cardinal compass directions, NORTH, SOUTH, EAST,

and WEST relative to v, and we call this a configuration of v. We have
determined by experiment that configuring the highest degree nodes
first tends to result in more favourable configurations, i.e. in a greater
total number of alignments. Degree-2 nodes, meanwhile, which we
call links, are left out of this process entirely. The maximal subgraphs
consisting entirely of links are called chains, and these are configured
in the following step, according to different principles.

We attempt to assign as many as possible of the neighbours of v to
the four compass directions, favouring an assignment that minimises
the total angular displacement of these nodes relative to v. The con-
figuration is achieved by projecting onto appropriate alignment and
separation constraints. Guided by P1, we prohibit any configuration
that would reverse the orthogonal ordering of any node with respect
to v. E.g. if u was a neighbour of v with ux < vx before configuration,
then we would require ux ≤ vx after configuration; in other words, u
could not be assigned EAST. If in addition we had uy > vy, then u also
could not be assigned NORTH. We also prohibit any assignment that
would alter the cyclic order of the neighbours of v.

After greedily assigning the best configurations we can to each non-
link node, we use gradient-descent to minimise the stress in the graph.
During node configuration the stress will in general have climbed
steadily with each projection onto the configuration constraints. The
chains however remain unconstrained, and stress-minimisation will
now cause them to settle into balanced, well-distributed arrangements,
smoothing any jagged corners that may have arisen.

This permits us to again honour P1 as we move on to chain config-
uration, the second step in the orthogonalisation process. Let a chain
be given, consisting of the links v1,v2, . . . ,vk, and let nodes u and w be
the other neighbours of the first and last links v1 and vk, respectively.
Edges e0 = (u,v1) and ek = (vk,w) may or may not have been aligned
by the node configuration process. For example, v1 might be aligned
EAST of u, and vk NORTH of w. In such a case, choosing where to
enforce bends in the chain is similar to the process of routing an or-
thogonal connector when the connection directions at each endpoint
are given. As shown in Fig. 2 of Wybrow et. al. [36], the minimal
number and types of bends required depend on the relative positions
of u and w as well as the connection directions. If the edge e0 is not yet
aligned, we simply consider both of the possible compass assignments
of v1 relative to u that preserve their orthogonal ordering, and likewise
with ek.

For a given chain, there may be different minimal-length bend se-
quences, e.g. (R,R,L) or (L,L,L). We evaluate each potential bend
sequence by a greedy process that chooses locally optimal points at
which to create each bend in the chain.

Here we depart from the orthodoxy that bend points are always
bad, as we consider both nodes and edges as potential bend points
in the chain. We believe that a bend point may be deliberately cre-
ated in an edge in service of other aesthetic principles, namely stress-
minimisation and symmetry. This is one example of our attempt to
follow P2, and work like an opportunistic human editor.

The basic idea of our greedy process is simple: in order to gauge
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how suitable an edge is for becoming a bend point we measure how
close its slope is to ±1 in the plane. For a node we likewise consider
the slope of the base of an isosceles triangle with apex at the node’s
centre and with one leg parallel to each of the node’s edges.

The cost of creating a bend at a given edge or node is measured as
a certain increasing function of the difference of the slope at that place
from ±1 (sign chosen according to bend direction), and the cost of a
bend sequence is the sum of these costs. We greedily attempt to choose
a minimal-cost bend sequence, and enforce it, aligning each edge of
the chain vertically or horizontally with new alignment constraints,
onto which we project. After thus processing each chain, the chain
configuration step is complete.

As a configurable option, the ACA algorithm [20] may be applied
to the chains instead of this process. We have found that this gives
better results on large graphs as in our second user study (see Sec. 5),
but not on small graphs as in the first study.
(c) For the low-density graphs at which our algorithm is targeted, most
of the connectors will now be mere straight axis-aligned segments, as
a result of the orthogonalisation. However, some diagonal connectors
may remain, and in Step 2c we compute an orthogonal routing for each
of these [36]. By construction every node in the core C has degree at
least two, and we take care to ensure that connectors attach to at least
two of the four sides of each node, lest the node become a leaf in the
planarisation of Step 3b.

4.3 Tree layout and placement

In this step we now incrementally add the trees back into the core in
accordance with P3.
(a) We first determine a layout for each tree Ti. The symmetric tree
layout of Step 3a uses the algorithm of Manning and Atallah [21].
Each tree is provisionally given SOUTH growth direction, meaning that
each rank is horizontally aligned and appears below, i.e. with greater
y-coordinate, than the prior rank, starting with the root node r′i . If the
tree structure is in fact symmetric with respect to the root node then the
layout will be symmetric about a vertical axis through the root node;
otherwise it will be as close to symmetric as possible about this axis
in a certain well-defined sense (namely the “c-trees” [21] are paired
off about this axis to the extent possible). The edges of each tree are
routed orthogonally [36] with all edge connections on the sides facing
the opposite rank. Our initial user study suggests that this is a desir-
able layout for a tree as it clearly shows the structure and emphasises
symmetries.
(b) Next we determine how to place each tree in the core. We begin
by planarising the core in order to give it a well-defined set of faces
into which the trees can be placed. This is achieved in two passes,
each of which is implemented as a “sweep” algorithm [13]. In the
first, edge overlaps are removed by introducing a dummy node for
each bend point of each connector, and then eliminating all but one
edge between each pair of nodes. In the second pass, edge crossings
are removed by introducing a dummy node at each crossing. Crossing
detection can be achieved by this O(n logn) sweep process because all
connector segments are axis-aligned.
(c) We are now left with graph P, which is a planarisation of the core
graph C, and whose set of nodes contains that of C as a subset (Fig. 5c).
In particular each root node ri for the trees Ti belongs to P. Since P is
planar we may compute its set F of faces. Step 3c of the layout process
now determines how to reattach the trees laid out in Step 3a to the root
nodes ri in P. This means choosing for each tree Ti a tree placement
( f ,dp,dg,b), where f ∈ F is a face to which the root node ri belongs,
dp and dg are the placement direction and growth direction, and b is
the flip bit.

The placement direction dp is one of the eight compass directions
including the four cardinal directions discussed already, as well as the
four ordinal directions, SE, SW, NW, and NE. The growth direction dg
is one of the four cardinal compass directions. If dp is cardinal then dg
must equal dp; if dp is ordinal then dg must be one of the two cardinal
components of dp. The flip bit b is a Boolean saying whether the tree
should be flipped over the axis of its growth direction dg.

Tree placement is a greedy process. The trees are considered in
descending order of the perimeter of their bounding box, and as we
examine each possible placement ( f ,dp,dg,b) we attempt to make a
choice which will minimise the increase in stress. In general place-
ment into face f may require the generation of separation constraints
to expand the available space inside f to make room for the tree. The
expansion can usually be performed in several different ways (there is
at least the decision whether to operate in the x- or the y-dimension
first), and we evaluate each option by computing the necessary separa-
tion constraints, projecting, measuring the change in the stress of the
graph, and backtracking. In this way tree placement is guided by P1.

Besides consideration of stress, however, our choice of tree place-
ments is governed by two configurable flags, one saying whether we
will favour cardinal placement directions dp, and one saying whether
we will favour placement in the external face fext , i.e. the unique
unbounded face. Under our default configuration both flags are set
to true, with cardinal placement taking highest precedence, followed
by external placement, and with stress minimisation being considered
last.

Favouring of cardinal placement is motivated by the desire for sym-
metry, and to make the routing of connectors from the root node to
the tree nodes of the first rank easier (i.e. so that the connectors are
shorter overall, and so that there is more room in which to route them).
Favouring of placement in the external face is motivated by findings
from our initial user study. Thus tree placement is also guided by P2.

In Fig. 5d two trees have been placed already, and their bounding
boxes inserted into the graph temporarily as place holders. The tree
rooted at the dark grey node is to be placed next, and three placement
directions dp are possible: SW or E into interior faces, or NW into the
exterior face. Under our default configuration the E placement will be
chosen, since it is the only cardinal direction available.
(d) During the tree placement process the stress of the graph will in
general climb as we project onto each new set of face-expansion con-
straints. Therefore after all trees have been placed (Fig. 5e) we per-
form gradient-projection (Step 3d) to dissipate the accumulated stress
as much as possible.

4.4 Opportunistic improvement
One of the hallmarks of (good) human layouts is that they obey the
NONO principle: “Nothing is Obviously Non-Optimal.” The final
stage in our algorithm is designed to tweak the layout, ideally leaving
no obvious small changes that would improve the layout.
(a) We begin in Step 4a with a process which searches for nearby
pairs of nodes which are almost (but not quite) aligned, and it applies
constraints to align them. For example in Fig. 5e the dark grey nodes
will be aligned, as in Fig. 5f.
(b) After addressing alignments we consider the even distribution of
nodes. This time instead of making local refinements we rely on a
global stress minimisation step (Step 4b) in which we modify the stress
function to include only those terms corresponding to neighbouring
nodes. We refer to this as neighbour stress, and this step tends to
space sequences of adjacent nodes more evenly by ignoring the effects
of long-range forces.
(c) Next, with a view to the aspect ratio of most existing display de-
vices, we rotate the layout by ninety degrees if its width is less than
its height. To make the rotation direction deterministic we prefer that
a majority of trees wind up with SOUTH growth direction after the
rotation, rather than NORTH. Since we must not rotate the nodes them-
selves (they may have labels), rotation means that the node positions
(but not dimensions) as well as the constraints holding amongst them,
are rotated, and after this we apply another gradient-projection with
neighbour stress.
(d) Finally we remove dummy nodes in passing from the planarised
graph back to the original, and perform a final orthogonal routing of
the edges. In this step we ensure that edge routes pass through any
bend points deliberately created in the chain configuration step, but
otherwise take this as a final chance for edge routes to be optimised
relative to node positions which in general will have changed since the
previous routing.
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5 FINAL EVALUATION

We performed a second user study3 to provide a summative evaluation
of the algorithm and comparison with the state-of-the-art orthogonal
layout algorithm. This study extended our first evaluation (Sec. 3.2) in
three ways.

First, from our first study we had eight user-generated layouts that
were most highly ranked in the tournament. We could now compare
these with two styles of automatic layout: the new HOLA algorithm
and the state-of-the-art yFiles TSM implementation. Since the best
manual layouts had already been shown to be (on average) preferred
to yFiles, we expected them to again by preferred by participants in a
direct three-way comparison; however, since HOLA is designed to be
“human-like” in its approach to layout, we hypothesised (H1) that its
output would also be preferred on average over yFiles on the corpus of
small graphs.

Second, the correlations between layout attributes and preference
revealed by our first study (R1-9) were observed in small graphs, lim-
ited by the size of graph that could reasonably be manually arranged
by our participants. Since both HOLA and yFiles are completely au-
tomated we could now directly compare the “human-like” layout ap-
proach with the existing layout algorithm on much larger graphs. We
hypothesised (H2) that HOLA layouts would be preferred over yFiles
layouts by most participants on larger graphs.

Third, these larger and more complex graphs make readability much
more challenging, and so for these graphs we could conduct non-
trivial readability tests. We examined user performance on two stan-
dard tasks: finding a shortest path between two nodes and finding the
neighbours of a node. We hypothesised (H3) that participants would
have greater speed and accuracy in completing these tasks with HOLA
layouts compared to yFiles layouts.

Apparatus & Materials: The second user study used two graph cor-
pora. The first contained three layouts of each of the eight graphs from
the original study: layouts computed with HOLA, yFiles (default set-
tings, as discussed previously) and the highest-voted human layout of
each graph. The second corpus contained HOLA and yFiles layouts
for six larger graphs. We chose one SBGN graph (the Glycolysis-
Gluconeogenesis pathway), one metro map graph (Sydney), and we
generated four random graphs, including one small (60 nodes, 65
edges), one large (120 nodes, 126 edges), and two medium-sized
graphs of different densities, (90 nodes, 100 edges) and (90 nodes,
110 edges). See Fig. 6. We could not include human layouts for these
larger graphs because manual layout would have taken prohibitively
long.

Participants: The study was advertised on Monash Memo as well
as within our Faculty. 89 participants started the survey and completed
Part 1, 84 completed Part 2, and 83 continued through Parts 3 and 4.
Due to a display error in the first part, we had to reject the first 13
participants’ answers on three of the eight graphs. A $50 gift card was
offered as incentive, and it was explained that the winner would be the
participant whose accuracy and speed were the best in Parts 2 and 3,
and whose choices were the closest to the aggregate choices in Parts 1
and 4 and thus, in order to win, your best strategy was to choose the
layouts which you thought would be preferred by most other people.

Procedure: The survey was conducted online. It had 4 parts.
Part 1: Participants ranked the three layouts in the first corpus. The

order of the graphs was randomised, as was the order of the three lay-
outs on each page. Users were asked to drag gold, silver, and bronze
medal icons onto the three layouts. (The icons also said ‘1st’, ‘2nd’,
and ‘3rd’.)

Part 2: Participants were asked to find a shortest path between two
nodes in the six larger graphs. The two nodes were chosen systemati-
cally: one was a highest-degree node (chosen at random) and the other
was any node either four or five links away (again chosen randomly).
Users were shown each graph in two layouts, HOLA and yFiles, with
the two chosen nodes coloured red, and they were asked to click on
the nodes of a shortest path between them, turning the intermediate
nodes green. They were first given a training task of the same kind,

3Full results available online [3]

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6: Left column: HOLA layouts for the (a) small, (b) medium,
lower density, (c) medium, higher density, (d) large, (e) SBGN, and (f)
metro map graphs from Parts 2, 3, and 4 of the second study. Right
column: yFiles layouts for the same graphs.
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Fig. 7: Participants’ preferences for drawings by human, yFiles or
HOLA of graphs from Fig. 3. A solid arrow a→ b indicates a sig-
nificant preference for condition a over condition b at the p < 0.01
confidence level. The dotted arrow indicates a preference for layout of
Graph 8 by HOLA over yFiles at the p < 0.05 level.

in which they could not advance until they had correctly identified a
shortest path.

Part 3: This was similar to Part 2 but with a single red node and
the task being to click on all neighbours of that node. There was again
a training task. The red node was chosen to be a node of maximal
degree but different from both of the red nodes chosen for Part 2, to
avoid familiarity effects.

Part 4: The large graphs were shown in the two layouts HOLA
and yFiles side by side, and users were asked to say which layout was
better, and to briefly explain why in a text box.

Results & Discussion
Part 1: User rankings assigned with the gold, silver, and bronze medal
icons in the online study were mapped onto the numbers 1, 2, 3 re-
spectively, so that 1 was the best possible rank and 3 the worst. The
rankings were analysed using Friedman’s test. The aggregate mean
rank across all graphs was 1.75 for Human, 1.80 for HOLA, and 2.46
for yFiles, and the null hypothesis was rejected (p = 2.607e-15). Thus,
we can accept H1 and conclude that HOLA is of comparable quality
to human layout for the eight small networks considered.

Post-hoc pairwise Nemenyi tests showed that both HOLA and Hu-
man layout were preferred over yFiles and hence, are an improvement
over the best existing orthogonal layout algorithm (p = 2.9e-12 and p =
5.0e-11 resp.). On average over all graphs, neither HOLA nor Human
layout was clearly preferred one over the other, as hoped in our intent
to match human layout quality. The significant pairwise preferences
for the eight individual graphs amongst the three layout methods are
shown in Fig. 7.

Part 2: This compared user performance when finding the short-
est path between two nodes on the larger graphs laid out using yFiles
and HOLA. Both error rates and timings showed a high degree of lep-
tokurtosis, so Wilcoxon’s signed rank test was used. The mean error
rates 0.162 for HOLA and 0.548 for yFiles differed significantly (p =
1.916e-14). The mean times 12.27s for HOLA and 29.15s for yFiles
also differed significantly (p = 2.085e-15).

Part 3: This compared user performance when counting a node’s
neighbours on the larger graphs laid out using yFiles and HOLA.
Again both error rates and timings showed a high degree of lep-
tokurtosis, so Wilcoxon’s signed rank test was used. The mean error
rates 0.159 for HOLA and 0.349 for yFiles differed significantly (p =
4.364e-09). The mean times 10.10s for HOLA and 12.98s for yFiles
also differed significantly (p = 2.848e-12).

The significant results for Part 2 and 3 together allow us to reject
any null-hypothesis for H3 and accept that overall, participants were
significantly faster and more accurate with HOLA layout than yFiles.

Part 4: Finally we compared user preferences on the larger graphs.
User rankings were analysed using Wilcoxon’s signed rank test. The
aggregate mean rank across all graphs was 1.20 for HOLA and 1.80
for yFiles, which differed significantly (p = 5.123e-12).

Among individual graphs only the higher density graph on 90 nodes
(Fig. 6c) showed no significant preference. For all others HOLA was
preferred (p < 1.0e-5). This reinforces our decision to target lower
density graphs, and shows that HOLA produces better layouts in those
cases (H2).
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Fig. 8: HOLA running time on a collection of random graphs with
between 10 and 170 nodes, and with densities between 1.1 and 1.5
edges per node. yFiles layout takes less than 2 seconds on each of
these graphs. On the small graphs from our first study HOLA runtimes
range from 9 to 97 milliseconds.

Feedback: After giving their preference for the large graphs, users
left comments in a free-text field. From 83 participants looking
at six graphs, 359 comments were collected. There were 65 com-
ments concerning proximity of connected nodes, e.g., “Connected
nodes are generally closer together, making their association more
obvioius[sic].” There were 12 comments mentioning “structure,” 8 of
them favouring the “structure” of HOLA layout, e.g., “Clearer to see,
more structured layout.” Sixteen comments gave favourable mention
to “trees” in HOLA, e.g., “More familiar - like a family tree.” Briefly,
other significant terms and the number of times they were mentioned
were: “Compactness” (13 times), “Symmetry” (3 times), “grid” (4
times), and “cross[ings]” (7 times).

6 CONCLUSION AND FUTURE WORK

We have presented a new “human-centred” methodology for automatic
network layout algorithm design that uses both formative and sum-
mative user studies. We have used this new methodology to develop
HOLA, an orthogonal network layout algorithm that achieves a lay-
out quality comparable to that of a human and significantly better than
previous automatic layout algorithms.

As part of the formative studies for HOLA we conducted a “human-
authored layout” study in which users manually created an orthogo-
nal layout for small graphs by moving nodes and manipulating the
edge routes. In accord with previous studies we found that humans
did not like crossings or bends, liked symmetry and regular grid-like
node placement, uniform segment length and separated clusters. We
also found that compactness was important. The most surprising result
was most of the highly ranked human layouts contained unnecessary
bendpoints whose purpose appeared to be to emphasise symmetry or
ensure contiguous edges.

HOLA has potentially wide application in engineering and biology
where orthogonal layout of networks is commonplace. However there
are some ways in which we could improve it. The first is speed (see
Fig. 8); parts of the algorithm are currently still implemented in Python
which is sub-optimal. After porting to C++, HOLA will be released as
part of the open-source Adaptagrams layout library [1].

The second possible improvement is extending HOLA to better
handle dense graphs through integration of automatic cloning [15],
edge-bundling [17] and compression techniques [10].
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